On a CR family of compact strongly pseudoconvex CR manifolds
نویسندگان
چکیده
منابع مشابه
Embedding Compact Strongly Pseudoconvex Cr Manifolds of Class C
In this paper we derive maximal pointwise Hölder estimates for the Kohn’s Laplacian on strongly pseudoconvex CR manifolds of class C3 using the Tanaka-Webster Pseudohermitian metric. The estimates can be used to improve the Boutet De Monvel’s embedding theorem for strongly pseudoconvex compact CR manifolds of real dimension greater or equal to five with less smoothness assumption.
متن کاملEmbeddability of Some Strongly Pseudoconvex Cr Manifolds
We obtain an embedding theorem for compact strongly pseudoconvex CR manifolds which are bounadries of some complete Hermitian manifolds. We use this to compactify some negatively curved Kähler manifolds with compact strongly pseudoconvex boundary. An embedding theorem for Sasakian manifolds is also derived.
متن کاملOn Weakly Pseudoconvex Cr Manifolds of Dimension 3
Let M be a compact, COO CR manifold of dimension 3 over R. Associated to the CR structure is a first-order differential operator, Db' on M. We study the regularity properties, in terms of L P Sobolev and Holder norms, of the equation Db u = f. M is said to be CR if there is given a COO sub-bundle, denoted T I .o M , of the complexified tangent bundle TM, such that each fiber T~'o M is of dimens...
متن کاملHartogs Type Theorems for CR L functions on Coverings of Strongly Pseudoconvex Manifolds
We prove an analog of the classical Hartogs extension theorem for CR L2 functions defined on boundaries of certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a question formulated in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds.
متن کاملNormal Cr Structures on Compact 3-manifolds
We study normal CR compact manifolds in dimension 3. For a choice of a CR Reeb vector field, we associate a Sasakian metric on them, and we classify those metrics. As a consequence, the underlying manifolds are topologically finite quotiens of S or of a circle bundle over a Riemann surface of positive genus. In the latter case, we prove that their CR automorphisms group is a finite extension of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2006
ISSN: 0022-040X
DOI: 10.4310/jdg/1143593744